

SÍNTESE DE NANOESTRUTURAS DE ÓXIDO DE ANTIMÔNIO VIA COMBUSTÃO AUTO SUSTENTADA

PINTO, O. M.1; GONÇALVES, R. A.2;

¹ Discente do curso superior em Licenciatura em Física do IFNMG – *Campus* Januária; ² Docente do IFNMG – *Campus* Januária;

Introdução

Os nanomateriais têm sido alvo de intensas pesquisas nas últimas décadas devido aos efeitos resultantes das suas pequenas dimensões (1-100 nm) e da sua alta área superficial. Essas características conferem aos nanomateriais características notavelmente diferentes daquelas encontradas em moléculas e sólidos cristalinos convencionais, e garantem aplicações em áreas tais como eletrônica, medicina, armazenamento de energia, indústria química e naval, dentre outras (MARTINS & TRINDADE, 2012).

Neste cenário, o óxido de antimônio, surge como um nanomaterial promissor, devido às suas propriedades, dentre elas, a atividade como retardante de chamas, boa estabilidade química, elevado índice de refração, alta transparência óptica na região do visível e alta difusividade na região do infravermelho, o que faz deste óxido um possível candidato para uso como isolante térmico (GONÇALVES, 2020; VUKOVIC *et al.*, 2014).

Diante disso, esse trabalho tem como objetivo sintetizar óxido de antimônio através de uma nova rota (combustão auto sustentada) e estudar os efeitos dos parâmetros de síntese sobre a estrutura e morfologia do nanomaterial. Os parâmetros serão alterados de modo a produzir nanoestruturas de óxido de antimônio ocas e/ou mesoporosas, que contenham ar em seu interior (isolante térmico), de modo a diminuir sua capacidade térmica. Essas características são fundamentais para determinar a aplicação do material e o desempenho do produto final.

Material e Métodos

A rota de síntese escolhida para a obtenção do óxido de antimônio foi a rota de combustão auto sustentada em temperatura ambiente. Nesse estudo, o tricloreto de antimônio (SbCl₃ - NEON >99%) e o hidróxido de sódio (NaOH - Sigma Aldrich >99%) foram utilizados como comburente e combustível, respectivamente.

Inicialmente, os reagentes foram pesados separadamente respeitando-se a proporção molar de 1:9 de SbCl₃:NaOH: (3, 1396 ± 0, 0001)g de SbCl₃ e (4, 9448 ± 0, 0001)g de NaOH. A massa extra de NaOH foi utilizada para garantir a máxima eficiência da reação. Então, ambos os químicos foram misturados em uma placa de petri utilizando uma espátula de cerâmica e deixado em repouso por uma hora e meia, coberto com um filme de PVC. Posteriormente, o material foi coletado por centrifugação (4000 rpm, 5 minutos) e lavado sequencialmente com água deionizada, etanol 95% e água deionizada. Após o enxágue, o material foi levado para secagem em uma estufa a 250°C por 18 horas. Após o processo, o material foi coletado e armazenado em um recipiente para futuras análises.

Resultados e Discussão

Na síntese de combustão auto sustentada, espera-se que ocorra a seguinte reação química (VUKOVIC *et al.*, 2014):

$$2SbCl_3 + 6NaOH \rightarrow 2Sb_2O_3 + 6NaCl + 3H_2O$$

Experimentalmente, foi observado que ao misturar os químicos, houve a liberação de vapores (água quente, em grande parte, como prevê a teoria). Foi observado ainda um grande aquecimento da placa de petri em que foi feita a mistura, confirmando que de fato a reação ocorrida é exotérmica.

Ao final do processo de síntese, foi obtido um pó de granulação fina e coloração amarelo pálido (Fig. 1), muito semelhante ao que é reportado na literatura (GONÇALVES, 2020), o que sugere que material obtido seja, de fato, óxido de antimônio.

O material obtido foi ainda analisado utilizando-se um microscópio óptico (Fig. 2), no qual foi possível verificar que a amostra é constituída de partículas muito pequenas (indistinguíveis no instrumento) que se aglomeram fracamente, o que indica que as estruturas obtidas tenham dimensões nanométricas. Análises de Difratometria de Raios X (DRX) e Microscopia Eletrônica de Varredura (MEV) da amostra estão sendo realizadas para confirmar essas análises preliminares.

Considerações finais

Os resultados obtidos indicam que a rota de combustão auto sustentada em temperatura ambiente seja uma rota de síntese eficiente para produção de óxido de antimônio nanoestruturado. O próximo passo consiste em analisar a estrutura do material obtido através do DRX e MEV, para poder alterar os parâmetros da síntese de forma que os resultados obtidos se aproximem mais dos esperados.

Agradecimentos

Ao Instituto Federal do Norte de Minas Gerais (IFNMG) pelo apoio financeiro, técnico e logístico que tornou possível a realização do nosso trabalho.

Referências

GONÇALVES, R. A.. Novas rotas para síntese de nanoestruturas óxidas dos sistemas Sb-O e Ce-O por fase de vapor e suas aplicações. Tese (Doutorado) - Universidade Estadual Paulista, Guaratinguetá - SP, 2020. MARTINS, M. A.; TRINDADE, T. Os nanomateriais e a descoberta de novos mundos na bancada do químico. Química Nova. São Paulo, n. 7, p. 1434 - 1446, Jun. de 2012.

VUKOVIC, M.; BRANKOVIC, Z.; POLETI, D.; RECNIK, A.; BRANKOVIC, G. Novel Simple Methods for the synthesis of single-phase valentinite Sb_2O_3 . **Journal of Sol-Gel Science and Technology**. n. 72, p. 527 - 533, *Dec.* 2014.

Figura 1: Óxido de antimônio após o processo de síntese. Fonte: autor.

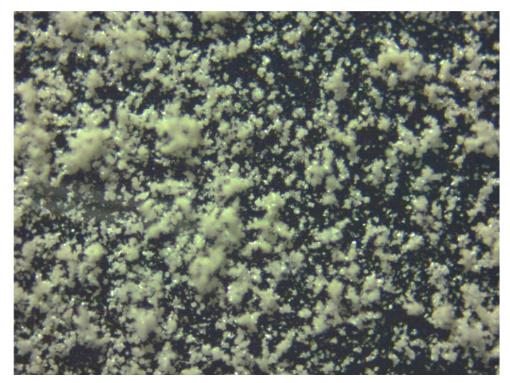


Figura 2: Material sintetizado com ampliação de 100x no microscópio óptico. Fonte: autor.