

PARÂMETROS MORFOLÓGICOS EM MUDAS DE Amburana cearenses A. C. Smith PRODUZIDAS SOB DIFERENTES SUBSTRATOS E DENSIDADES NA BANDEJA

GOMES, A. A. F.¹; SANTOS, D. F. dos²; MASSAD, M. D.³; DUTRA, T. R.³

¹Discente do curso superior em Engenharia Florestal IFNMG – Campus Salinas; ²Engenheira Florestal; ³Docente do IFNMG – Campus Salinas.

Introdução

O estudo para a conservação da diversidade biológica da Caatinga tem sido um grande desafio da ciência no Brasil, em função do processo de alteração e deterioração ambiental em decorrência do uso insustentável dos recursos naturais (LEAL et al., 2003). Dentre as diversas espécies florestais presentes no bioma, especialmente na região Norte de Minas Gerais, destaca-se a Amburana cearensis A. C. Smith, da família Fabaceae, conhecida popularmente como imburana de cheiro, cerejeira, cumaru-de-cheiro, umburana e amburana (LEAL et al., 2011). Suas sementes são utilizadas largamente como aromatizantes e repelentes de insetos, podendo ser aplicadas em roupas e nas estantes. As cascas e as sementes são empregadas na medicina caseira em várias regiões do país. Sua madeira é bastante utilizada para marcenaria, esculturas e na confecção de barris para o armazenamento e envelhecimento de bebidas.

Para a produção de mudas, é preciso considerar alguns fatores, como por exemplo, o substrato e o manejo das mudas, uma vez que, a germinação de sementes e a iniciação radicular estão diretamente ligados às características químicas, físicas e biológicas do substrato (CALDEIRA et al., 2000).

O aprimoramento das técnicas silviculturais é de grande relevância, a fim de que seja assegurada a expedição das mudas com padrão de qualidade, reduzindo os custos de produção com o aproveitamento dos resíduos orgânicos e ajustando a disposição das mudas na bandeja.

A utilização dos resíduos da agroindústria e da indústria como componentes de substratos orgânicos, minimizam o descarte a céu aberto ou em aterros sanitários, contribuindo para diminuir o seu acúmulo no meio ambiente. Neste contexto, torna-se interessante a reutilização dos resíduos com grande potencial na região, que geralmente são descartados e desprezados pelos produtores, mas que podem fazer parte de substratos para produção de mudas.

Além do substrato, a densidade de mudas na bandeja afeta o desenvolvimento das mudas no viveiro. Segundo Ataíde et al. (2010), a densidade dos tubetes na bandeja influencia diretamente os custos de produção, o desenvolvimento e a arquitetura das plantas.

Neste contexto, o objetivo do trabalho foi avaliar os parâmetros morfológicos das mudas de umburana sob o efeito da densidade de mudas na bandeja e o uso de diferentes proporções de materiais orgânicos na composição de substratos alternativos.

Material e Métodos

O trabalho foi conduzido no "Viveiro de Produção de Mudas Florestais" do Instituto Federal de Educação, Ciência e Tecnologia do Norte de Minas Gerais (IFNMG), Campus Salinas. Foi utilizado o delineamento experimental de blocos ao acaso, com três repetições, no esquema fatorial (5 x 3), sendo avaliados cinco tipos de substratos e três densidades de mudas na bandeja, totalizando 15 tratamentos.

Os substratos avaliados foram: 100% substrato comercial Rohrbacher®; 70% Rohrbacher® + 30% Bagaço de Cana; 40% Rohrbacher® + 60% Bagaço de Cana; 70% Rohrbacher® + 30% Sabugo de

milho; 40% Rohrbacher® + 60% Sabugo de milho. As características físicas dos substratos foram determinadas conforme metodologia proposta por Carvalho e Silva (1992) (Tabela 1).

Foram utilizados tubetes de 180 cm³ e bandejas com capacidade de 54 tubetes. As densidades de mudas estudadas foram 54, 24 e 8 mudas por bandeja, que correspondem a 100%, 50% e 20% de área ocupada, possuindo uma área amostral constituída por 15 mudas. Aos 145 DAS, foram mensuradas a altura da parte aérea (H; cm) e o diâmetro do coleto (DC; cm) das mudas, com o auxílio de uma régua milimetrada e um paquímetro digital.

Os dados obtidos foram submetidos à análise de variância e, quando o efeito do tipo de substrato ou a densidade de mudas por bandeja foi significativo, as médias foram comparadas pelo teste de Scott – Knott (p < 0.05). As análises estatísticas foram realizadas utilizando-se o pacote ExpDes.pt (FERREIRA et al., 2013), do software livre R (R CORE TEAM, 2015).

Resultados e Discussão

Houve efeito significativo da interação dos fatores densidade na bandeja e os substratos para a variável diâmetro do coleto nas mudas de umburana (Tabela 2). Observou-se as maiores médias foram obtidas no substrato 40RO+60BC, nas densidades de 100% e 50% de ocupação dos tubetes na bandeja. O maior adensamento estimulou a competição por espaço entre as mudas na bandeja, aumentando a capacidade das mudas de assimilarem água, luz e nutrientes, induzindo um melhor desenvolvimento das plantas. Esse resultado significa uma redução de 60% do volume do substrato comercial utilizado na produção das mudas de umburana com a substituição pelo bagaço de cana e uma otimização do uso da mão de obra e dos insumos do viveiro com o aproveitamento total da bandeja.

Para Duble (2011), valores referentes à macroporosidade dos substratos, inferiores a 10% são prejudiciais ao crescimento radicular. Nota-se no referente trabalho valores maiores que 10% para todos os substratos estudados. Para a microporosidade, Gonçalves e Poggiani (1996) reiteram que, valores entre 25 a 50% de microporosidade são considerados como médios e valores inferiores a 25% como baixos. Sendo assim, os substratos 100RO, 70RO+30BC, 70RO+30SM e 40RO+60SM obtiveram valores médios de microporosidade.

Houve efeito isolado do substrato para a altura da parte aérea (Tabela 3). Observou-se que para essa variável as maiores médias foram para o substrato 100RO, 70RO+30BC e 40RO+60BC. De acordo com Davide e Faria (2008), uma muda de qualidade deve possuir altura entre 20 a 35 cm. Essa variável é considerada uma das mais antigas na classificação e seleção e ainda continua apresentando contribuição importante, podendo ser indicada como um parâmetro relevante para essa avaliação, principalmente na comercialização de mudas florestais.

Considerações finais

O substrato alternativo 40RO+60BC na densidade por bandeja de 100% produziu mudas com maiores médias para os parâmetros altura da arte aérea e diâmetro do coleto.

Agradecimentos

Ao Instituto Federal do Norte de Minas Gerais (IFNMG) – Campus Salinas, pelo apoio logístico.

Referências

ATAÍDE, G. M. et al. Efeito da densidade na bandeja sobre o crescimento de mudas de eucalipto. **Revista Trópica – Ciências Agrárias e Biológicas**, v. 4, n. 2, p. 21, 2010.

CALDEIRA, M. V. W. et al. Crescimento de mudas de *Eucalyptus saligna* Smith em função de diferentes doses de vermicomposto. **Revista Floresta**, v. 28, n. 2, p. 19-30, 2000.

III Seminário

CARVALHO, C. M.; SILVA, C. R. **Determinação das propriedades físicas de substrato**. Botucatu: Faculdade de Ciências Agronômicas: Universidade Estadual Paulista, 1992. 6p.

DAVIDE, A. C.; SILVA, E. A. A. **Produção de sementes e mudas de espécies florestais**. 1. ed. Lavras, MG: Editora UFLA, 2008. 174 p.

DUBLE, R. L. **Turfgrass rootzones**. 2011. Disponível em: http://www.turfdiag.com/turfgrassrootzones.html. Acesso em 13 ago. 2023.

FERREIRA, E. B.; CAVALCANTI, P. P.; NOGUEIRA, D. A. **ExpDes.pt:** experimental designs package R package version (1.1.2). 2013. Disponível em: http://cran.r-project.org/web/packages/ExpDes/index.html Acesso em 23 set 2022.

GONÇALVES, J. L. M.; POGGIANI, F. Substratos para produção de mudas florestais. In: CONGRESSO LATINO AMERICANO DE CIÊNCIA DO SOLO, 13., 1996, Águas de Lindóia, **Resumos...** Piracicaba: Sociedade Latino Americana de Ciência do Solo, 1996. CD-Rom.

LEAL, I.R; MARCELO, T: SILVA, J. M. C. **Ecologia e Conservação da Caatinga**. 2 ed. Editora Universidade 2003. LEAL, L. K. A. M. et al. A comparative chemical and pharmacological study of standardized extracts and vanillic acid from wild and cultivated *Amburana cearensis* A. C. Smith. **Phytomedicine**, v. 18, p. 230-233, 2011.

R CORE TEAM. **R:** A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing, 2015. Disponível em: http://www.R-project.org/. Acesso em 15 out 2022.

Tabela 1. Características físicas dos substratos utilizados na produção de mudas de umburana

Características ¹	Substrato ²					
	100RO	70RO+30BC	40RO+60BC	70RO+30SM	40RO+60SM	
Porosidade Total, %	75,81	63,39	61,32	77,02	79,80	
Macroporosidade, %	44,02	37,54	41,28	43,21	48,20	
Microporosidade, %	31,78	25,85	20,03	33,81	31,60	
CMRA, mL 55 cm ⁻³	15,89	12,92	11,02	10,12	9,11	

¹CMRA: Capacidade máxima de retenção de água. ²RO: substrato comercial Rohrbacher⊕; BC: bagaço de cana; SM: sabugo de milho. Fonte: Autora (2023).

Tabela 2. Valores médios do diâmetro do coleto das mudas de *Amburana cearensis* em resposta a diferentes densidades na bandeja e substratos, avaliadas aos 145 dias após a semeadura

Densidade (%)	Diâmetro do coleto (mm) ¹					
	Substrato ²					
	100RO	70RO+30BC	40RO+60BC	70RO+30SM	40RO+60SM	
100	4,89 bB	5,63 aA	5,75 aA	5,29 aB	4,93 aB	
50	5,79 aA	5,53 aA	5,77 aA	5,07 aB	4,80 aB	
20	5,14 bA	5,15 aA	4,92 bA	4,53 bB	4,53 aB	

¹Médias seguidas da mesma letra minúscula na coluna e maiúscula na linha não diferem entre si pelo teste Scott-Knott a 5% de probabilidade. ²RO: substrato comercial Rohrbacher®; BC: bagaço de cana; SM: sabugo de milho. Fonte: Autora (2023).

Tabela 3. Valores médios da altura da parte aérea das mudas de *Amburana cearensis* em resposta a diferentes substratos, avaliadas aos 145 dias após a semeadura

Substrato ²	H (cm) ¹	
100RO	38,7 a	
70RO+30BC	38,5 a	
40RO+60BC	38,3 a	
70RO+30SM	33,4 b	
40RO+60SM	32,2 b	

¹Médias seguidas da mesma letra minúscula na coluna não diferem entre si pelo teste Scott-Knott a 5% de probabilidade. ²RO: substrato comercial Rohrbacher®; BC: bagaço de cana; SM: sabugo de milho. Fonte: Autora (2023).