CORRELAÇÃO DE CARACTERÍSTICAS AGRONÔMICAS DE GENÓTIPOS DE GIRASSOL CULTIVADOS EM JANUÁRIA-MG, SAFRA 2021/2022

SALES, T. E. C.¹; GUEDES, R. M.²; CASTRO, P. I. P.²; MONTEIRO, A. L. M.³; MOTA. S. B. O. ³; GOMES FILHO, A. ⁴

¹Discente do curso técnico em Agropecuária do IFNMG – campus Januária; ²Discente do curso Bacharelado em Agronomia do IFNMG – campus Januária; ³Egresso do IFNMG – campus Januária; ⁴Docente do IFNMG – campus Januária;.

Palavras chaves: Helianthus annus; Melhoramento; Produtividade; Seleção

Introdução

A cultura do girassol (*Hellianthus annuus L.*) atua como uma das principais oleaginosas cultivadas do mundo (RIGON *et al.*, 2012), apresentando ampla capacidade de adaptação às diferentes condições edafoclimáticas (SANTOS *et al.*, 2015). O cultivo do girassol tem se mostrado como uma nova opção econômica, ganhando cada vez mais espaço no território Brasileiro (PEREIRA et al., 2016). Isso é possível graças às suas particularidades agronômicas como, curto ciclo reprodutivo, fácil adaptação, resistência a fatores abióticos, além da alta demanda do setor industrial e do comércio, sendo uma importante alternativa na sucessão com outras culturas em diferentes sistemas de produção (RAIZER *et al.*, 2015).

Um aspecto a ser considerado é o estudo da correlação entre as características agronômicas, visto que através dela é possível identificar a associação entre os caracteres revelando informações úteis ao melhorista auxiliando no processo seletivo de determinada variável (NOGUEIRA *et al.*, 2012). Nesse sentido, este trabalho tem por objetivo estimar as correlações de caracteres agronômicos de quatorze genótipos de girassol cultivados no norte de Minas Gerais.

Material e métodos /Metodologia

O trabalho foi realizado na área experimental do IFNMG - Campus Januária/MG. Nestas condições, quatorze genótipos de girassol foram avaliados, a saber: BRS 323, Aguará 06 e Hélio 250 as quais foram as testemunhas do experimento; e os genótipos BRS G62, BRS G63, BRS G64, BRS G65, BRS G66, BRS G67, BRS G68, BRS G69, BRS G70, BRS G71 e BRS G72, os quais são provenientes do Ensaio Nacional de genótipos de girassol provenientes da Embrapa Soja – Londrina/PR.

O experimento foi desenvolvido no período de 04 de novembro de 2021 a 26 de fevereiro de 2022. O preparo do solo foi realizado convencionalmente, com uma aração e duas gradagens, e abertura de sucos manualmente. A adubação foi realizada aplicando-se 40 kg ha-1 de N, 80 kg ha-1 de K2O e 80 kg ha-1 de P2O5 no sulco de plantio, e aos 25 dias após emergência foram aplicados 30 kg ha-1 de N e 2 kg ha-1 de Boro via solo.

O espaçamento adotado foi o de 50 cm entre linhas e 43 cm entre plantas, conforme recomendação da Embrapa – Soja. Foram semeadas manualmente três sementes por cova, sendo que aos sete dias após a emergência, foi realizado o desbaste. A parcela experimental teve as dimensões de 6 m de comprimento e 2 m de largura, com quatro linhas de plantio, sendo desprezadas duas linhas externas, assim como 0,50 m de cada extremidade a título de bordadura. Foram avaliadas as seguintes

características: Stand de plantas (STD), Altura de planta (AP), Tamanho do capítulo (TC), Peso de mil aquênios (PMA) e Produtividade de aquênios (PROD).

O delineamento experimental foi o de blocos casualizados e quatro repetições. Para o estudo de correlação entre as variáveis, aplicaram-se a análise de correlação simples de Pearson. As análises estatísticas foram realizadas utilizando-se o Software Rbio (BHERING, 2017).

Resultados e discussão

De acordo com os resultados obtidos (tabela 1), é possível observar que existiu uma correlação linear altamente significativa, de modo positivo, entre as variáveis produtividade e tamanho de capitulo. O mesmo foi observado entre o tamanho de capitulo e a altura de planta, reforçando a ideia de que plantas de maior porte apresentaram capitulos mais desenvolvidos, permitindo com isto plantas com melhor potencial produtivo. Trabalho realisado por Nobre et al. (2012) avaliando o desempenho agronômico de genótipos de girassol mostrou que capitulos bem desenvolvidos tendem a ter maiores proporções de aquênios com tamanho superiores e mais pesados, e os mesmos com maior aporte de nutrientes.

A variavél stand não apresentou significância quando correlacionada com o tamanho do capitulo. Vale ressaltar que o caractere altura de planta apresentou significância para todas as variaveis correlacionadas, sendo significativo para stand, peso de mil aquênios e produtividade, e para tamanho de capitulo apresentou correlação altamente significativa.

Conclusão(ões)/Considerações finais

O tamanho de capitulo foi a caracteristica de maior significância com a altura de planta e a produtividade, refletindo uma maior capacidade preditiva da produção dos genótipos. Tal variavel deve ser novamente avaliada em futuros trabalhos de melhoramento em diferentes épocas de semeadura.

Agradecimentos

Os autores agradecem ao IFNMG – Campus Januária, pelo apoio financeiro através da bolsa PIBIC, pela concessão da área experimental e recursos necessários para a condução do experimento. E a Embrapa soja – PR pelo fornecimento dos materiais genéticos avaliados e informações necessárias para desenvolvimento do trabalho.

Referências

BHERING, Leonardo Lopes. Rbio: A tool for biometric and statistical analysis using the R platform. Crop Breeding and Applied Biotechnology, v. 17, p. 187-190, 2017.

NOBRE, Danúbia Aparecida Costa et al. Desempenho agronômico de genótipos de girassol no norte de Minas Gerais= Agronomic performance of sunflower genotypes in the north of Minas Gerais, Brazil. Agro@ mbiente On-line, 2012.

NOGUEIRA, Ana Paula Oliveira et al. Análise de trilha e correlações entre caracteres em soja cultivada em duas épocas de semeadura. Biosci. j.(Online), p. 877-888, 2012.

PEREIRA, Débora Regina Marques et al. Uso do girassol (Helianthus annuus) na alimentação animal: aspectos produtivos e nutricionais. Veterinária e Zootecnia, v. 23, n. 2, p. 174-183, 2016.

Raizer, E., Molinari, D., Reinehr, T. O., Fetsch, V. T., Awadallak, J. A., da Silva, C. & da Silva, E. A. Produção de ácidos graxos livres através de hidrólise enzimática do óleo de girassol em ultrassom. Revista Tecnológica,p 63-71, 2015

RIGON, João Paulo Gonsiorkiewicz et al. Dissimilaridade genética de girassol por meio de caracteres quantitativos. Ciência Rural, v. 42, p. 1954-1959, 2012.

SANTOS, A. M. P. B., Peixoto, C. P., Almeida, A. T., Santos, J. M. da S. & Machado, G. S. Tamanho ótimo de parcela para a cultura de girassol em três arranjos espaciais de plantas. Revista Caatinga. 2015.

ANEXO I

Tabela 1 – Matriz de correlação linear de Pearson entre as variáveis stand de plantas (STD), altura de planta (AP), tamanho de capítulo (TC), produtividade de aquênios (PROD) e peso de mil aquênios (PMA) de plantas de girassol (*Helianthus annuus* L.) cultivados no norte de Minas Gerais, Januária (MG), safra 2021/2022.

Caracteres	STD	AP	TC	PROD
AP	0.322407^*	-		
TC	-0.03379 ^{ns}	0.576356***	-	
PROD	-0.179093 ^{ns}	0.291196^*	0.482033***	-
PMA	-0.280436*	-0.264358*	-0.193251 ^{ns}	0.129279 ^{ns}

ns, *, ***, respectivamente, não significativo, significativo e muito altamente significativo