

ESTUDO FARMACOCINÉTICO E TOXICÓLOGICO *IN SILICO* PARA DERIVADOS DE FLAVONAS

Gabriel Veloso Correa¹, Stephanie Priscila de Sousa Cezário¹, José Felipe Leite Ferreira Rosa¹, Laura Faria Araujo¹, Luiz Frederico Motta²

RESUMO: Por meio de metodologias *in silico* avaliou-se a biodisponibilidade oral e predições farmacocinéticas e toxicológicas para três análogos de flavonas (apigenina, crisina e luteolina). O estudo revelou que os análogos apresentam elevada biodisponibilidade oral e parâmetros farmacocinéticos e toxicológicos favoráveis. Evidenciou-se que todos os análogos possuem elevada taxa de absorção intestinal, não atravessam a barreira hematoencefálica, são permeáveis pelas células Caco-2 e não inibem a glicoproteína P. Além disso, o estudo de toxicidade *in silico* humana Teste AMES não apresentou alta carcinogenicidade e toxicidade, apenas a luteolina apresentou toxicidade moderada.

Palavras-chave: Produtos Naturais. Flavonoides. Quimioinformática. Farmacocinética *in sílico*. Toxicologia *in silico*.

1. INTRODUÇÃO

Os flavonóides são pigmentos naturais presentes na maioria das plantas com funções primordiais: proteção contra agentes oxidantes, participação no crescimento, desenvolvimento e defesa dos vegetais contra ataques de patógenos. Atualmente, existe mais de 8.000 flavonoides identificados na natureza, dentre os quais pode-se citar a subcategoria classificada como flavona (SIMÕES *et al.*, 2007).

O desenvolvimento de novos fármacos provenientes de plantas é considerado atualmente como sendo uma estratégia promissora em função das diversas finalidades terapêuticas comprovadas e publicadas na literatura (GONÇALVES, 2020). No entanto, esse processo é caro e requer laboratórios com elevada

¹ Estudante do Curso Engenharia Química – IFNMG (Montes Claros): Grupo de Química Medicinal e Tecnologias Computacionais Avançadas.

² Doutor em Ciências com ênfase em Química Medicinal. Docente/Pesquisador – IFNMG (Montes Claros): Grupo de Química Medicinal e Tecnologias Computacionais Avançadas, E-mail: luiz.motta@ifnmg.edu.br

tecnologia. Diante desse contexto, surgiram metodologias *in silico* no qual a partir da estrutura química dos compostos bioativos realiza-se predição de diversos parâmetros farmacocinéticos e toxicológicos. (FIALHO, 2017). O objetivo deste estudo deu-se na determinação do perfil de biodisponibilidade oral, estudo farmacocinético e toxicológico *in silico* humano para três análogos de flavona: apigenina, crisina e luteolina.

2. METODOLOGIA.

Inicialmente as estruturas químicas dos análogos de flavonas foram desenhadas bidimensionalmente (2D), visualizadas tridimensionalmente (3D) com auxílio do programa ACD/ChemSketch® Freeware versão 2021 (Advanced Chemistry Development, Inc., 2021) e obteve-se o código SMILES (Simplified Molecular Input Line Entry Specification), exportando para as plataformas internacionais de bancos de dados. Por intermédio da Quimioinformática, realizou-se o estudo farmacocinético in silico humano para avaliar o perfil de biodisponibilidade oral dos análogos com auxílio do banco de dados da plataforma Molinspiration Cheminformatics® (https://www.molinspiration.com) (GROB, 1986).

Em seguida, realizou-se o estudo farmacocinético *in silico* dos análogos das flavonas para predizer os seguintes descritores moleculares: Absorção Intestinal Humana (HIA), Permeabilidade pela Barreira Hematoencefálica (BBB), Inibição da glicoproteína P, Permeabilidade pelas células epiteliais Caco-2 e Distribuição celular dos derivados no organismo humano. Este estudo foi realizado com auxílio da plataforma chinesa on-line admetSAR® (http://lmmd.ecust.edu.cn/admetsar2/).

Finalmente foi realizado o estudo toxicológico *in silico* humano para os análogos de flavonas com intuito de predizer a toxicidade pelo Teste de AMES, carcinogenicidade e a Toxicidade Oral Aguda. O estudo também foi realizado com auxílio da plataforma chinesa admetSAR® (http://lmmd.ecust.edu.cn/admetsar2/). (YANG, et al., 2018).

3. ANÁLISE DOS DADOS

O estudo farmacocinético *in silico* humano avaliou o perfil de biodisponibilidade oral dos análogos de flavona, revelando se o derivado viola ou não a Regra de Lipinski

(Regra-dos-Cinco). A molécula que não viola a Regra de Lipinski apresenta elevada taxa de absorção intestinal humana, solubilidade plasmática e nos líquidos teciduais e, permeabilidade pelas membranas biológicas.

A tabela 1 indica os valores dos descritores moleculares obtidos com auxílio do banco de dados da plataforma Internacional Molinspiration Cheminformatics® (https://www.molinspiration.com).

Tabela 1: Avaliação do Perfil de Biodisponibilidade Oral.

Análogos	miLogP	PM	DLH	ALH	TPSA	Violações *	NLR**	VM***
Apigenina	2,46	270,24	3	5	90,89	0	1	224,05
Crisina	2,94	254,24	2	4	70,67	0	1	216,03
Luteolina	1,97	286,24	4	6	111,12	0	1	232,07

Fonte: Molinspiration Cheminformatics®

A análise da tabela 1 revela que os análogos não violaram a Regra de Lipinski. Para tal, devem se enquadrar levando em consideração os seguintes parâmetros descritores: 1) Coeficiente de Partição octanol-água Log P (miLogP) \leq 5: descritor molecular de natureza hidrofílica/hidrofóbica; 2) Peso Molecular (PM) \leq 500 Da (Dalton); 3) Sítios Doadores de Ligações de Hidrogênio (SDLH) \leq 5; 4) Sítios Aceptores de Ligações de Hidrogênio (SALH) \leq 10 e 5) Área Topológica Superficial Polar TPSA \leq 140Å².

A tabela 2 representa a avaliação do perfil farmacocinético *in silico* dos seguintes parâmetros: HIA, BBB, Permeabilidade pelas células epiteliais Caco-2, Inibição da glicoproteína-P e Distribuição celular dos análogos no organismo, de forma qualitativa (positivo e negativo e quantitativa. A análise da tabela 2 revela que todos os análogos em estudo se apresentaram positivos para a HIA, com elevadas taxas de HIA. Nota-se também que os três análogos de flavonas avaliados não conseguem atravessar a barreira hematoencefálica.

O estudo toxicológico *in silico* humano (tabela 3) para os análogos de flavonas foi realizado com objetivo de predizer a toxicidade de acordo com o teste de Ames,

carcinogenicidade e a toxicidade oral aguda dos derivados em categorias (I, II, III e IV).

Tabela 2: Avaliação do Perfil Farmacocinético in silico humano (ADME in silico).

Análogos	ВВВ		HIA		Distribuição		Inibidor da glicoproteína- P		Caco- 2	
	Q	Р	Q	Р	0	Р	I	Р	Q	Р
Apigenina	negativo	0,775	positivo	0,967	mitocôndria	0,665	não	0,829	positivo	0,931
Crisina	negativo	0,775	positivo	0,967	mitocôndria	0,665	não	0,635	positivo	0,904
Luteolina	negativo	0,775	positivo	0,907	mitocôndria	0,589	não	0,925	positivo	0,746

Fonte: admetSAR® versão 2.0

A tabela 3, traz informações relevantes no que tange à avaliação do perfil toxicológico *in silico* humano.

Tabela 3: Avaliação do Perfil Toxicológico *in sílico* Humano.

Análogos	AMES		Carcinogênico	Toxicidade oral aguda		
Apigenina	NT	83,00%	NC	95,00%	III	70,12%
Crisina	NT	86,00%	NC	95,00%	Ш	70,12%
Luteolina	NT	51,00%	NC	100,0%	II	73,48%

Fonte: admetSAR® versão 2.0

A análise da tabela 3 revela dados promissores para todos os análogos de flavonas que se mostraram não tóxicos no que tange ao teste de AMES e também por não serem carcinogênicos. Com relação a toxicidade oral aguda os análogos apigenina e crisina enquadram-se na categoria III, ou seja, apresentam baixa toxicidade, enquanto o análogo luteolina apresenta toxicidade moderada, visto que se enquadra na categoria II.

4. CONSIDERAÇÕES FINAIS

O Screening Virtual para predição do perfil da biodisponibilidade oral, revelou que os análogos não violaram a Regra de Lipinski. Quanto ao estudo farmacocinético in silico humano demonstrou resultados promissores quanto aos descritores determinados. O estudo toxicológico in silico humano revelou que todos os análogos não apresentam toxicidade quanto ao Teste de AMES, não apresentam carcinogenicidade e quanto à toxicidade oral aguda a apigenina e a crisina não apresentam toxicidade, enquanto que a luteolina possui toxicidade moderada.

5. REFERÊNCIAS

FIALHO, S. N. Atividade leishmanicida de derivados sintéticos do ácido cinâmico contra Leishmania amazonensis in vitro. Porto Velho, RO, Brasil, TCC (Graduação) - Curso de Bacharel em Ciências Biologicas, 2017.

GONÇALVES, R. O. Síntese de ésteres derivados do ácido cinâmico, p-metoxicinâmico e ferúlico e avaliação da citotoxidade. Fortaleza, CE, Brasil, Dissertação de mestrado, 2020.

GROB, S. Molinspiration Cheminformatics: Cheminformatics on the Web, NOVARTIS: Bratislava University, Slovak Republic, 1986; disponível em: http://www.molinspiration.com/

SIMÕES, C. M. O.; SCHENKEL, E. P.; GOSMANN, G.; MELLO, J. C. P.; MENTZ, L. A.; PETROVICK, P. R. **Farmacognosia: da planta ao medicamento.** 6ª. ed., Porto Alegre, Editora da UFRGS, 2007.

YANG, H.; SUN, L.; LI, W.; LIU, G.; TANG, Y. In silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts. Front. Chem., 6, 30, 2018.